Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers.
نویسندگان
چکیده
BACKGROUND After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. METHODS AND RESULTS The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dt(max)) significantly decreased in fibrotic monolayers (14.4 ± 0.7 cm/s [mean ± SEM], 4.1 ± 0.3 cm/s [n=53], and 3.1 ± 0.2% per ms [n=14], respectively) compared with control monolayers (27.2 ± 0.8 cm/s, 8.5 ± 0.4 cm/s [n=40], and 4.9 ± 0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dt(max) in fibrotic monolayers (35.9 ± 1.5 cm/s, 10.3 ± 0.6 cm/s [n=17], and 4.5 ± 0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. CONCLUSIONS These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.
منابع مشابه
Acute slowing of cardiac conduction in response to myofibroblast coupling to cardiomyocytes through N-cadherin.
The electrophysiological consequences of cardiomyocyte and myofibroblast interactions remain unclear, and the contribution of mechanical coupling between these two cell types is still poorly understood. In this study, we examined the time course and mechanisms by which addition of myofibroblasts activated by transforming growth factor-beta (TGF-β) influence the conduction velocity (CV) of neona...
متن کاملAbolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers.
RATIONALE Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SM...
متن کاملElectrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level.
Understanding how electrotonic loading of cardiomyocytes by unexcitable cells alters cardiac impulse conduction may be highly relevant to fibrotic heart disease. In this study, we optically mapped electrical propagation in confluent, aligned neonatal rat cardiac monolayers electrotonically loaded with cardiac fibroblasts, control human embryonic kidney (HEK-293) cells, or HEK-293 cells genetica...
متن کاملAggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress.
AIMS Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-depende...
متن کاملMyofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model
Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 123 19 شماره
صفحات -
تاریخ انتشار 2011